Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Ju-Tao Liu ${ }^{\text {a }}$ and Seik Weng $\mathrm{Ng}^{\mathrm{b} *}$

${ }^{\text {a }}$ College of Life Science, Dalian Nationalities University, Dalian 116600, People's Republic of China, and ${ }^{\text {b }}$ Department of Chemistry, University of Malaya, Kuala Lumpur 50603, Malaysia

Correspondence e-mail: seikweng@um.edu.my

Key indicators

Single-crystal X-ray study
$T=295 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.008 \AA$
Disorder in main residue
R factor $=0.060$
$w R$ factor $=0.171$
Data-to-parameter ratio $=16.5$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
catena-Poly[tri- μ-cyano-1,10-phenanthroline- $\kappa^{2} N, N^{\prime}$ tricopper(I)]

The crystal structure of the centrosymmetric title compound, fully described by the name catena-poly[[(1,10-phenanthro-line- $\kappa^{2} N, N^{\prime}$)cupriocyano]copper(I) $]-\mu$-cyano-[[(1,10-phenan-throline- $\kappa^{2} N, N^{\prime}$)cupriocyano]copper(I) $]-\mu$-cyano-copper(I)-μ-cyano-copper(II)- μ-cyano $], \quad\left[\mathrm{Cu}_{3}(\mathrm{CN})_{3}\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\right]_{n}$, consists of $(\mathrm{Cu}-\mathrm{CN}-)_{n}$ polymeric chains in which two consecutive Cu atoms in every contiguous set of four each carry a pendant (phenanthroline)coppercyano unit. The Cu atoms with pendant groups are three-coordinate, as are the phenanthroline-chelated Cu atoms; the other independent Cu atom that comprises the backbone is two-coordinate. Two adjacent chains are linked by a $\mathrm{Cu} \cdots \mathrm{Cu}$ interaction [2.941 (1) Å] into a ribbon. All cyano groups are disordered with no distinction between C and N atoms.

Comment

Copper(I) cyanide forms, with 1,10-phenanthroline, adducts of varing stoichiometries. The $1: 1$ copper(I) cyanide-1,10phenanthroline adduct that crystallizes in the trigonal crystal system is orange in colour (Dyason et al., 1985), whereas that belonging to the orthorhombic crystal system is red (Mao et al., 2005). A monoclinic 3:2 adduct is also red in colour (Yu et al., 2003), as is the monoclinic $3: 1$ adduct (Chestnut et al., 2001). These linear polymeric adducts have one cyano group bridging two Cu atoms, and the coordination number is 2 for the atoms that merely comprise the backbone of the chain, and 3 for those that also bear a pendant heterocycle-chelated unit.

(I)

The present brown 3:1 adduct, (I), features a linear $\left(\mathrm{Cu}_{-}\right.$ $\mathrm{CN}-)_{n}$ polymeric chain in which two consecutive Cu atoms in

Received 20 July 2006 Accepted 25 July 2006

Figure 1
Part of the polymeric structure of the title compound, showing the Cu coordination environment. Displacement ellipsoids are drawn at the 50\% probability level and H atoms are drawn as spheres of arbitrary radii. The cyanide groups are disordered. The CN group with the C 1 atom lies at $\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$ and the CN group with the C 3 atom lies at $\left(\frac{3}{2}, y, \frac{1}{4}\right)$; the carbon atoms are disordered with respect to nitrogen atoms.

Part of the ribbon structure that arises from the $\mathrm{Cu} \cdots \mathrm{Cu}$ interactions (shown as dashed lines). H atoms have been omitted.
every contiguous set of four are each cyano-bridged to a pendant (phenanthroline)copper unit (Fig. 1). The other part of the chain is almost linear. Interestingly, two chains are positioned in such a way that copper-copper interactions $[\mathrm{Cu} 1 \cdots \mathrm{Cu} 1(-1+x, y, z)=2.941(1) \AA]$ give rise to the formation of fused rings; the sides are made up of these interactions (Fig. 2).

Experimental

Potassium hexacyanoferrate(III) ($66 \mathrm{mg}, \quad 0.2 \mathrm{mmol}$), copper(II) chloride dihydrate ($34 \mathrm{mg}, 0.2 \mathrm{mmol}$) and 1,10-phenanthroline
($36 \mathrm{mg}, 0.2 \mathrm{mmol}$) in water (15 ml) were placed in a Teflon-lined stainless steel Parr bomb. The bomb was heated at 403 K for 36 h . The bomb was then cooled to room temperature over a period of 24 h . Brown crystals of the title compound were isolated in about 40% yield.

Crystal data

$\left[\mathrm{Cu}_{3}(\mathrm{CN})_{3}\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\right]$
$M_{r}=448.88$
Monoclinic, $C 2 / c$
$a=6.790$ (1) \AA
$b=24.642(5) \AA$
$c=18.136$ (4) \AA
$\beta=99.43$ (3) ${ }^{\circ}$
$V=2993.5(10) \AA^{3}$

$$
Z=8
$$

$D_{x}=1.992 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$\mu=4.23 \mathrm{~mm}^{-1}$
$T=295$ (2) K
Block, brown
$0.22 \times 0.18 \times 0.16 \mathrm{~mm}$

Data collection

Rigaku R-AXIS RAPID IP diffractometer
ω scans
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)
$T_{\text {min }}=0.441, T_{\text {max }}=0.551$
$($ expected range $=0.407-0.508)$

Refinement

Refinement on F^{2}
H -atom parameters constrained
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.060$
$w R\left(F^{2}\right)=0.171$
$S=1.02$
3430 reflections
208 parameters
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0785 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\text {max }}=0.67 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.85 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters ($\mathrm{A},{ }^{\circ}$).

$\mathrm{Cu} 1-\mathrm{C} 1$	$1.895(5)$	$\mathrm{Cu} 2-\mathrm{C} 3$	$1.846(5)$
$\mathrm{Cu} 1-\mathrm{N} 1$	$1.913(6)$	$\mathrm{Cu} 3-\mathrm{C} 4$	$1.864(6)$
$\mathrm{Cu} 1-\mathrm{N} 2$	$1.935(5)$	$\mathrm{Cu} 3-\mathrm{N} 3$	$2.081(5)$
$\mathrm{Cu} 2-\mathrm{C} 2$	$1.852(6)$	$\mathrm{Cu} 3-\mathrm{N} 4$	$1.989(5)$
$\mathrm{C} 1-\mathrm{Cu} 1-\mathrm{N} 1$	$126.0(2)$	$\mathrm{N} 3-\mathrm{Cu} 3-\mathrm{N} 4$	$82.8(2)$
$\mathrm{C} 1-\mathrm{Cu} 1-\mathrm{N} 2$	$117.7(2)$	$\mathrm{C} 2-\mathrm{N} 1-\mathrm{Cu} 1$	$176.2(5)$
$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{N} 2$	$116.2(2)$	$\mathrm{C} 4-\mathrm{N} 2-\mathrm{Cu} 1$	$167.5(4)$
$\mathrm{C} 2-\mathrm{Cu} 2-\mathrm{C} 3$	$166.5(2)$	$\mathrm{C} 5-\mathrm{N} 3-\mathrm{C} 16$	$118.3(5)$
$\mathrm{C} 4-\mathrm{Cu} 3-\mathrm{N} 3$	$118.7(2)$	$\mathrm{C} 5-\mathrm{N} 3-\mathrm{Cu} 3$	$131.8(4)$
$\mathrm{C} 4-\mathrm{Cu} 3-\mathrm{N} 4$	$156.1(2)$		

The C and N atoms of the four independent cyanide units are disordered with an occupancy factor of 0.5 , the C and N atoms sharing the same positions and displacement parameters. H atoms were positioned geometrically ($\mathrm{C}-\mathrm{H}=0.93 \AA$) and were included in the refinement in the riding-model approximation, with $U_{i s o}(\mathrm{H})=$ $1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

The authors thank Tianjin University for the diffraction measurements. They also thank Dalian Nationalities University and the University of Malaya for supporting this study.

metal-organic papers

References

Chestnut, D. J., Kusnetzow, A., Birge, R. \& Zubieta, J. (2001). J. Chem. Soc. Dalton Trans. pp. 2581-2586.
Dyason, J. C., Healy, P. C., Engelhardt, L. M., Pakawatchai, C., Patrick, V. A. \& White, A. H. (1985). J. Chem. Soc. Dalton Trans. pp. 839-844.
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.

Mao, H.-Y., Zhang, C.-Z., Xu, Ch., Zhang, H.-Y., Shen, X.-Q., Wu, B.-L., Zhu, Y., Wu, Q.-A. \& Wang, H. (2005). Inorg. Chim. Acta, 358, 1934-1942.

Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Yu, J.-H., Xu, J.-Q., Yang, Q.-X., Pan, L.-Y., Wang, T.-G., Lu, C.-H. \& Ma, T.-H. (2003). J. Mol. Struct. 658, 1-7.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

